1. Mathematical models of the chromatographic process

- What determines retention time in LC?
- What causes peak broadening in LC?
- Why are the LC peaks often asymmetric?
- Why is partition chromatography much more popular than desorption chromatography?

Mathematical modeling of chromatography

- We will look at three aspects:
 - Compound’s retention time
 - Peak width
 - Peak shape

Partition and adsorption chromatography

- Partition chromatography:
 - Liquid-liquid chromatography
 - The most common is reversed phase (RP) LC
 - Gas-liquid chromatography
 - Partition between liquid and gas
- Adsorption chromatography:
 - Liquid-solid chromatography
 - Adsorption on a solid from a liquid
 - Gas-solid chromatography
 - Adsorption on a solid from the gas phase

Partition between liquid and gas

- Liquid-gas partition: **Henry’s law**
 \[C_i = k_{H,i} \cdot P_i \]
 - \(C_i \) molar concentration of compound i in the liquid
 - \(P_i \) Partial pressure of compound i in the gas phase
 - \(k_{H,i} \) Henry’s constant of compound i
 - Depends on compound, liquid, temperature

Partition between two liquids

- Liquid-liquid: **Distribution law**
 \[K_{d,i} = \frac{C_i^{v2}}{C_i^{v1}} \]
 \[C_i^{v2} = K_{d,i} \cdot C_i^{v1} \]
 - \(C_i^{v1} \) molar concentration of compound i in liquid 1
 - \(C_i^{v2} \) molar concentration of compound i in liquid 2
 - \(K_{d,i} \) Distribution coefficient of i between liquids 1 and 2
 - \(K_{d,i} \) depends on compound and liquids, less on temperature
Linear relationship

- Both relationships give the same linear relationship – linear sorption isotherm (Henry isotherm):

\[C_{\text{stats}} \]

\[C_{\text{mob}} \]

\[K_{d,i} \]

Linear chromatography

- Chromatographic model whereby linear sorption isotherm describes partition of the analyte molecules between stationary and mobile phases is called linear chromatography.

- If possible then it is useful to work under the linear chromatography conditions:
 - This is a lot easier to achieve in partition chromatography than in adsorption chromatography.

When does the linear chromatography model hold?

- Both stationary phase (SP) and mobile phase (MP) are homogenous
 - There is no possibility that the molecules of the same compound \(i \) can be retained with different strengths in either phase
- The volumes of the stationary and mobile phases are much larger than the amount of compound \(i \)
 - There is no interaction between the molecules of compound \(i \)
- In reality these conditions only partially hold

Distribution law in LC

\[K_{d,i} = \frac{C_{\text{stats}}}{C_{\text{mob}}} \]

\(n_{\text{stats}} \)

\(n_{\text{mob}} \)

\(V_{\text{stats}} \)

\(V_{\text{mob}} \)

- \(n_{\text{stats}} \): number of moles of \(i \) in SP
- \(n_{\text{mob}} \): number of moles of \(i \) in MP
- \(V_{\text{stats}} \): volume of SP
- \(V_{\text{mob}} \): volume of MP

Capacity factor

\[K_{d,i} \cdot V_{\text{stats}} = n_{\text{stats}} / n_{\text{mob}} = k'_{i} \]

\(k'_{i} \)

- \(k'_{i} \): capacity factor of \(i \)
 - Depends on \(i \), \(K_{d,i} \), and volumes of the phases
Capacity factor

- Since:
 \[k_i' = \frac{t_{R,i}}{t_M} \]
- then:
 \[K_{d,i} \cdot \frac{V_{\text{stats}}}{V_{\text{mob}}} = \frac{t_{R,i} - t_M}{t_M} \]
- \(t_{R,i} \) retention time of i
- \(t_M \) dead time of the system

Retention time of compound i

- After rearranging:
 \[t_{R,i} = t_M \cdot \left(\frac{K_{d,i} \cdot V_{\text{stats}}}{V_{\text{mob}}} + 1 \right) \]
- This is the Main equation of elution
- Compound i is retained the stronger,

Peak width

- Peak width increases on elution
 - i.e. separation efficiency decreases
- This is described by the van Deemter equation

van Deemter equation

\[H = A + B u + C_s u + C_M u \]

- \(H \) – height of the theoretical plate (HETP)
- \(u \) – linear flow rate of MP
- \(A \) – Eddy diffusion term (several flow paths)
- \(B \) – longitudinal diffusion term
- \(C_s, C_M \) - mass transfer coefficients in SP and MP

How will efficiency change if we ...

- Make particles more uniform?
- Make particles smaller?
- Increase column temperature?
- Increase the viscosity of the mobile phase?
Peak shape

- If
 - The sorption isotherm is linear (i.e. Henry isotherm)
 - There are many factors causing peak broadening
 - The factors act in both directions
 - The factors influence all analyte molecules with the same probability, i.e. without differentiating molecules in different parts of the peak

- Then the peak has the shape of the Gauss distribution (Normal distribution)

In real life peaks usually have tails

Asymmetry factor

Optimal values of the parameters

- Tailing is a problem:
 - Resolution deteriorates
 - Quantitative accuracy becomes worse
 - Limit of detection gets higher

- An acceptable value: $A_s < 2$

- Why are peaks often asymmetric?

Nonlinear sorption isotherm

- Also in partition LC the sorption isotherm is often nonlinear
- The most common reason in reversed phase LC:
 - Dual retention: partition + adsorption
- Adsorption occurs on
 - Residual silanol groups
 - Metal cations, present in silica as impurities
RP stationary phases

- The majority of stationary phases are based on silica
- On silica surface: **Silanol groups**
- These are derivatized during production:

\[
\text{Si-OH} + \text{Cl-SiR}_3 \rightarrow \text{Si-O-SiR}_3 + \text{HCl}
\]
- The fuller is the derivatization, the better
- Some always remain underivatized: **residual silanol groups**

How to minimize the number of residual silanols?

- **End-capping**
 - Besides Cl-Si(CH₃)₂-R some smaller-molecule derivatization reagent is added
- **Shielding**
 - Instead of Cl-Si(CH₃)₂-R the Cl-Si(t-Bu)₂-R reagent is used

Silanol groups

- Silanol groups are of three types (simplified):

 a) isolated
 b) geminal
 c) vicinal

- The adsorption ability is the stronger, the higher is the **acidity**
 - The \(pK_a \) values range from 3 to 15

Metal cations

- Metal cations greatly enhance the adsorption ability of silica
- They can be
 - Free (d) or
 - Embedded in the lattice (e)
- Because of their valence properties the metal cations are positively charged in the lattice

\[
\text{M} + \text{Si-OH} \rightarrow \text{M-Si} \quad \text{d)} \\
\text{M} \quad \text{e)}
\]

Adsorption depends on the compound

- Such adsorption influences first of all:
 - Polar compounds
 - Especially strongly: basic compounds
 - Often a base is added to the MP
 - Compounds that give strong metal complexes

Physical background?

- Two sorption processes run in parallel:
 - **1. Partition**
 - Large volumes of phases
 - All analyte molecules “have space” in the SP
 - Linear isotherm
 - **2. Adsorption**
 - Small number of adsorption centres
 - Only a small part of the analyte molecules can be adsorbed
 - Retention by adsorption is stronger than by partition
Modeling adsorption

• Assumptions (1):
 – Adsorption only occurs on adsorption centres
 • Monomolecular adsorption
 – Analyte molecules do not interact with each other
 – The number of centres is limited
 – All centres are energetically equivalent

Modeling adsorption

• Assumptions (2):
 – There are two processes running simultaneously: adsorption and desorption
 – Their relative rates determine the adsorption equilibrium
 – The rate of adsorption is proportional to the number of free centres and the number of non-adsorbed analyte molecules in the liquid phase
 – The rate of desorption is proportional to the number of occupied centres

Adsorption rate

\[v_{ads} = k_{ads} \cdot C_{i}^{mob} \cdot (C_{i}^{ads_max} - C_{i}^{ads}) \]

• Adsorption rate
• Rate constant of adsorption
• Concentration of analyte in the MP
• Maximum surface concentration of analyte molecules
• Surface concentration of analyte molecules
• The extent of surface occupation: \(\theta = \frac{C_{i}^{ads}}{C_{i}^{ads_max}} \)

Desorption rate

\[v_{des} = k_{des} \cdot C_{i}^{ads} \]

• Desorption rate
• Desorption rate constant
• Surface concentration of analyte molecules

Equilibrium

• There is equilibrium if
 \[v_{ads} = v_{des} \]

• Therefore:
 \[k_{ads} \cdot C_{i}^{mob} \cdot (C_{i}^{ads_max} - C_{i}^{ads}) = k_{des} \cdot C_{i}^{ads} \]

Analyte concentration on surface

• Reorganising:
 \[C_{i}^{ads} = C_{i}^{ads_max} \frac{k_{ads}}{k_{ads} + k_{des}} C_{i}^{mob} \]

• Bringing in adsorption equilibrium constant:
 \[K_{i}^{ads} = \frac{k_{ads}}{k_{des}} \]
Langmuir’s isotherm

- We get the **Langmuir’s** isotherm:

\[C_{i_{\text{ads}}} = C_{i_{\text{ads max}}} \frac{K_{i_{\text{ads}}}}{1 + \frac{C_{i_{\text{mob}}}}{K_{i_{\text{ads}}}}} \]

Shape of Langmuir’s isotherm

- If the number of centres is large compared to the number of analyte molecules then the isotherm can be approximated by the **Henry isotherm**
- If the number of centres is small then almost all of them are occupied

Drawbacks of Langmuir’s isotherm

- Adsorption centres are not energetically equivalent
- Analyte molecules interact among themselves.
- Adsorption can occur on molecules already adsorbed. So the assumption of monomolecularity does not hold

The overall sorption isotherm

- Mixed **nonlinear** isotherm

Peak shape with nonlinear isotherm

- Gaussian peak
 - 100 adsorption-desorption processes
 - 500 adsorption-desorption processes

Detektori signaal

Gaussi kõvera kujuline piik

100 adsorptsiooni-desorptsiooniprotsessi

500 adsorptsiooni-desorptsiooniprotsessi

Retentsiooniaeg, min
Conclusions (1)

• It is good if the chromatographic process is based on partition, with linear sorption isotherm
 – Symmetric peaks
• For this: either no adsorption centres or they must be occupied

Stationary phase must be of high quality:
- low number of residual silanols and metal cations
- their activity low:
 - endcapping, shielding
 - acid washing

Mobile phase additive can be used, which adsorbs strongly and does not let analyte molecules to adsorb

Conclusions (2)

• In adsorption chromatography the work should be done in the “Henry region”:
 – Large specific surface
 – Lots of centres on the surface
 – Centres energetically similar
 – Low amounts of analytes should be injected
• In reality it is almost never ideal
 – Tailing is frequent in adsorption chromatography

• This is one of the reasons why partition chromatography is more popular than adsorption chromatography

Conclusions (3)

• Tailing is more pronounced with analytes that adsorb stronger
 – First of all polar and basic compounds
 – Also compounds that give strong metal complexes

Many other adsorption models

• Freundlich’s isotherm
 – Monomolecular adsorption
 – Centres are not energetically equivalent
 – The activity of the centres decreases logarithmically

• Tjomkin’s isotherm
 – Analogous, but the decrease is linear

• BET isotherm
 – Polymolecular adsorption

Many more empirical models

• Ca 90 empirical models have been proposed for describing peak shape
 – All describe unsymmetrical peaks
 – Some even describe doubled peaks

Applications of the models

• Deeper understanding
• Peak deconvolution
• LC simulations