Types of liquid chromatography

We focus on the stationary phase chemistry:
- Normal and reversed phase
 - Ion-pair chromatography
- Size exclusion chromatography
- Chiral chromatography
- Ion chromatography

Normal and reversed phase chromatography

Reversed phase chromatography
- Most common type of chromatography
 - Main topic for the rest of the semester
- Stationary phases: -C\textsubscript{18} and -C\textsubscript{8} mostly
- Mobil phase: Water + MeOH/MeCN/THF
 - Additives/buffer solution
Normal phase chromatography

Stationary phase is more polar than mobile phase

Mobile phase

- Mixture of organic solvents
- Does not contain water

Hydrophobicity is important!
Stationary phase

- Anorganic adsorbent
 - Silica gel
 - Aluminium oxide
- Polar bonded phases
 - Cyano
 - Diol
 - Amino

Analytes

- Neutral substances
- Problems occur with ionic substances
 - Mobile phase additives

Retention

- Is described as adsorption process
 - Stationary phase is covered with solvent molecules
 - Analyte retention occurs due to displacement of solvent molecules

HILIC

Hydrophilic interaction chromatography

Problem

- Very polar compounds
 - In normal phase chromatography bond too strongly with the stationary phase and elute very slowly from the column
 - In reversed phase chromatography no retention occurs and different analytes can not be separated
- If compound is ionic ion-chromatography can be used
HILIC chromatography:
• Same stationary phases as in normal phase chromatography
• Same eluents (MeCN/water) as in reversed phase chromatography
• Mechanism is explained via liquid-liquid partitioning
• Stationary phase is covered with water layer, while the mobile phase contains less water
• Analyte partitions between the water layer and the mobile phase
• Polar compounds show higher retention and elute later

Size Exclusion Chromatography (SEC)

Introduction
• In Size Exclusion Chromatography (SEC) two modes are used:
 – Gel Filtration uses water-based eluent. Mostly used for protein separation.
 – Gel Permeation Chromatography uses and organic solvent. Used for synthetic polymer separation.

SEC principles of separation
• Depending on their size, molecules can enter the pores of stationary phase.
 – 1. Very large molecules can’t fit into the pores and elute early.
 – 2. Small molecules can enter and move within the pores freely.
 – 3. Middle sized molecules can enter the pores partially. The smaller the molecule the longer it takes to elute.
SEC properties

• Separation is based on the hydrodynamic volume of the compounds (size).
• Allows to separate based on:
 – Chain length
 – Location of functional groups
 – Functional groups
 – Geometrical structure

SEC obtained information

• Retention time → average molecular weight
• Peak shape → molecular weight distribution

• Calibration is done with the same type of polymer as being analysed
• Sample and calibration mixture are dissolved in the same solvent.

Example of chromatogram

Example of calibration curve

Stationary phase is prepared

• Gel Filtration
 – Dextran (linear glucose polymer)
 – polyacrylamide
 – Agarose
• Gel Permeation
 – Extensively cross-linked copolymer of polystyrene and divinylbenzene

Ion (Exchange) Chromatography
Terminology

- Both terms IEC – ion exchange chromatography and IC – ion chromatography are used
 - Sometimes as synonyms
- IEC covers the processes that occur on the surface of ion exchange resin
- IC is the chromatography of ion separation and detection.
 - Mostly conductivity cell is used as a detector.
 - Separation is usually carried out with I/E, but RP can also be used.

IEC Retention

- Stationary phase is covered with charged groups:
 - amine, quaternary ammonium – positively charged
 - sulfonate, carboxylate – negatively charged
- Retention is based on the following equilibria:
 - $R-K^+ + X^+ \rightleftharpoons R-X^+ + K^+$ (cation exchange)
 - $R-Cl^- + X^- \rightleftharpoons R^- + Cl^-$ (anion exchange)
- Increasing the concentration of counterion (i.e. K^+ and Cl^-) decreases the analyte retention

Why IC?

- Why not use Reversed Phase Chromatography (Ion-Pair Chromatography)?
- Detection
 - Conventional detectors are blind to most inorganic (and some organic) compounds – conductivity cell
 - For MS-detection eluent additives should be volatile, ion-pair reagents (i.e. laurylesulfate) usually are not
- Preparative Chromatography
 - Non-volatile ionpair reagents are problematic
- Suitable as the first step in multidimensional chromatography

Eluent pH

- Analytes are usually acids or bases
- Ion Exchange is most effective when stationary phase and analyte are charged oppositely
- Derive retention dependency
 - For weak and strong cation/anion exchanger
 - For strong/weak acid/base

Acids occur in different forms depending on the eluent pH

Why acids/bases can not always be determined with reversed or normal phase chromatography?
Weak and Strong ion exchange resins

- Cation exchange
 - WCX and SCX – weak/strong cation exchange
- Anion exchange
 - WAX ja SAX – weak/strong anion exchange
- Strong are applicable 2<pH<12
- Weak resins lose charge at some pH
- Weak are seldom used
 - To modify selectivity
 - To decrease selectivity

pH effects

- Silica based columns can not be used pH>8 and pH<1.
- SCX and SAX with OH- may catalyze some reactions
 - e.g. ester hydrolyses

Salt effect on retention

- Retention depends on the anion (cation)
 - Counter ions have different strength of displacing the analyte
- Strong counterions decreases analyte retention more than weak counterions with the same concentration
 - F⁻ (weak)<OH⁻<CH₃COO⁻<Cl⁻<SCN⁻<Br⁻<CrO₄²⁻<I⁻<SO₄²⁻ (strong)
 - Li⁺ (weak)<H⁺<Na⁺<K⁺<Rb⁺<Cs⁺<Mg²⁺<Ca²⁺<Ba²⁺ (strong)

Organic solvent as an additive

- Organic solvent decreases retention
- MeOH and MeCN can be used to alter selectivity

Method development

- Column
 - SAX for acidic and anionic compounds; SCX for basic and cationic compounds;
- Eluent
 - Start with water based buffer solution.
 - pH=6 for SAX and pH=6 for SCX.
 - If analyte pKₐ is known pH>pKₐ for anion exchange and pH<pKₐ for cation exchange should be used
 - concentration 20...50 mM
Method development

- Eluent component B
 - Buffer + salt (e.g. K₂SO₄)
 - Test gradient 0...100% B
- If analyte does not elute
 - Increase temperature
 - Add MeOH
 - Use weak ion exchange resin
- If retention is ok (0.5<k<20)
 - Adjust selectivity with modifying salt, pH and organic additive.

Ion exchange resins

- Synthetic organic polymers
 - Most often used resins. Usually copolymers of styrene and divinylbenzene containing appropriate functional groups.
 - The biggest advantage is that synthetic polymers can be used in a wide pH range (0-13). Therefore also weak acids/bases can be determined.
 - The biggest disadvantages is softness — high pressure can not be used. This also limits column length and flow rate.

Ion exchange can be characterized:

- Selectivity
 - Stationary phase
 - Analytes charge
 - Solvated ions volume
 - Analytes polarizability
 - Ion-exchanger capacity
 - Functional groups on the stationary phase

Apparatus of ion-exchange chromatography

Suppressor-column

- Eluent high conductivity hinders usage of conductivity detector
- Suppressor-column helps to remove ions:

 - Needs frequent regeneration
Membran suppressor

Common applications

- Determination of inorganic ions
 - Mostly anions
- Amino acids, peptides and proteins
- Nucleic acids

Ion-pair chromatography

Therefore: Retention of carboxylic acids depends on the eluent pH.

Same stands for weak bases.

Mobile phase

- Ion-pair reagent
 - Opposite charge to the analyte
 - Long hydrophilic change
 - Bonds with reversed phase
- Alkyl sulfonates
 - For cation determination
- Tetraalkylammonium salts
 - For anion determination

Mobile phase

- Optimization
 - pH
 - Concentration of ion-pair reagent
- In case of gradient both components have to contain ion-pair reagent with the same concentration.
Surface is covered with positive charge!

Concentration of ion-pair reagent on the stationary phase depends on:
1. ion-pair reagent concentration in eluent
2. properties of ion-pair reagent

Very little ion-pair reagent bond to stationary phase. Analyte retention is weak.

A lot of ion-pair reagent in the mobile phase that also compete for analytes charge.

Enantiomer
- Stereoisomers, which are
 - mirror images
 - non-superimposable
- Same physical and chemical properties, except for the direction in which they rotate the plane of polarized light
- Nomenclature
 - R and S
 - D and L
 - + and -
Diastero(iso)mer

• Stereoisomers, which are not
 – non-superimposable
 – Are not mirror images
• Different physical and chemical properties

Chiral separation

• Separation has to be carried out on chiral system:
 – Chiral component in mobile phase
 – Chiral liquid stationary phase (liquid-liquid partition chromatography)
 – Chiral solid stationary phase
 – After derivatization with chiral reagent

Chiral separation

• Separation is based on the diastereomeric complex between analyte and chromatographic system.

Chiral solid stationary phase

• Chiral compound is bond to stationary phase (CSP – chiral stationary phase)
 – No one stationary phase is capable of separating all possible isomers
• Different types
 – Brush-type CSP
 – Helix-shaped phases
 – Cavity phases
 – Proteins
 – Ligand-exchange phases

Brush-type CSP

• Most common are Pirkle type CSP
 – Designed according to 3-poiind rule
 – Work in both normal and reversed phase chromatography
 – Is available in both isomers – analytes elution order is reversible

This oxygen cannot give hydrogen bond with stationary phase